A natural model for flight
With the BionicOpter, Festo has applied these highly complex characteristics to an ultra-lightweight flying object at a technical level. For the first time, there is a model that can master more flight conditions than a helicopter, plane and glider combined. In addition to controlling the flapping frequency and the twisting of the individual wings, each of the four wings features an amplitude controller. This means that the direction of thrust and the intensity of thrust for all four wings can be adjusted individually, thus enabling the remote-controlled dragonfly to move in almost any orientation in space. The intelligent kinematics correct any vibrations during flight and ensure flight stability both indoors and outdoors.
Integration of functions in the smallest of spaces
The unique flight behaviour is made possible by the lightweight design of the model dragonfly and the integration of its functions: sensors, actuators and mechanical components as well as communication, open and closed-loop control systems are installed in a very small space and connected to one another.
Highly complex system with easy operation
Despite its complexity, the highly integrated system can be operated easily and intuitively via a smartphone. The flapping frequency, amplitude and installation angle are controlled by software and electronics; the pilot just has to steer the dragonfly – there is no need to coordinate the complex motion sequences.
New innovations with bionics
The BionicOpter was developed as part of the Bionic Learning Network. Together with colleges, universities and development companies, Festo has spent many years developing and supporting projects and test models whose basic technical principles are derived from nature.
Read more about the Festo Dragonfly BionicOpter here.